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INTRODUCTION

The research progress given in this report represents that accom-
plished over the first six months of work on the project. The effective

date of the grant was July 1, 1963; however, work did not begin until

-

September 1, 1963 when the majority of the faculty and graduate students

returned to the University. The direction this research will take during
the next report period is altered somewhat from that reported here. 7.«
decision to modify this direction came after faculty working on ':e rescarch
project received security clearances and were permitted to obtain classified
information on the ROVER Project, from the staff of the Los Alamos Scientific
Laboratory. This information was not available to the researchers working
on the grant until well into the first report period. The research to be
conducted during the second report period will be more pertinent to part-
icular problems being encountered in the development of the nuclear rocket.
This progress report is divided into two parts. Part I deals with
the application of the Second Method of Liapunov to stability problems in
nuclear reactors. Several examples related to the nuclear rocket engine are
given. At the end of this section an outline of the research to be conduct-
ed during the next report period is presented. Part II of the report is
concerned with the application of Pontryagin's Maximum Principle to the sol-
ution of optimization problems in nuclear reactors. An optimum shutdown
program is determined for reactors, which will minimize the buildup of xenon
poisoning after shutdown. Solution of this problem has given s me insight
into the problem of determining an optimum program for propellant release

that will minimize the amount of propellant needed to accomcdate the after-

VagL
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shutdown heat geuneration in nuclear rocket engines. An outline c¢f the re-
search to be carried on in the application of the Maximum Principle to
nuclear rocket problems is given in the latter part of the section.

The results of the research given in this report will be presented

——

in two papers-fo bc given at the American Nuclear Society Meeting #m Phila-
. ) P . . ot ——t ’_”_—’“) JUY

delphia)i&/June 1964,
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PART 1

The Application of the Second Method of Liapurov

to Non-Linear Stability Problems in Nuclear Reactors



PART 1

I. Introduction

The Second Method of Liapunov provides a general approach to the
stability of dynamic systems described by ordinary linear or nonlinear
differential equations. This fact has been recognized by a small group of
nuclear engineers, and application of the Second Method has been made to
the inherently nonlinear reactor kinetic equations. However, as yet, the
Second Method has not attained the prominence among nuclear engineers that
it enjoys in the other engineering disciplines, particularly in the area of
automatic control.

Five yecars ago this was understandable, as the principal theorems
of Liapunov were still largely scattered in the Russian literature, or known
only to a relatively small group of mathematicians. However, this is no
longer the case; and, indeed, significant advances have been made by Ameri-
can authors in applying the Second Method of Liapunov to practical engineering

problems.

IT. Introduction to the Second Method

In this report, the dynamic systems under consideration are assumed
to be autoncmous and describable in state variable form as n first-order

differential equations (1),

= eee T
x bll(i) 3 + b12(§) x, + bln(i) X

(1)
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where n is the order of the system and x is an n-vector (column vector)
representing the state of the system. In matrix notation, this may be

written compactly as:

x = B(x) x (2)

where:
[, .. b ()
B(x) =1 . ‘; (3)

\b_(x) .. .b (x)

nl nn —

The b (x) may be any continuous function of the state variables x
The equilibrium state being investigated must be located at the
origin. This is actually no restriction, since any equilibrium point may

always be translated by simple linear change of variables to the origin.

’ 2
Let | x || be the Euclidean length of the vector x, i.e. | x |7 = xi +
.+ x2, and S(R) be a spherical region of radius R>0 around the origin,
n
i.e. S(R) consists of all points x satisfying |[x || <R.

inition of Asymptotic Stabilitv: The origin
is asymptotically stable if corresponding to
each S(R) there is an S(r) such that solutions
starting in S(r) do not leave S(R) but approach
the origin as t-—=co.

Only asymptotic stability will be considered in this report.
Simply stated, an autonomous system is asymptotically stable if it returns
to its original equilibrium state. If the definition holds in the whole
space, the system is globally asymptotically stable.

The following modified* Liapunov stability theorem, due to LaSalle ,

can now be stated:

* This theorem differs from the original Liapunov theorem in condition
(b) where V(x) is allowed to be equal or less than zero as long as it is not
zero on a solution of the system, other than the trivial solution, x = 0.




A Modified Liapunov Stability Theorem: If
there exists a scalar function V(x) with
continuous first partials such that

a. V(x) > 0 for all x # 0; v(0) = O
(positive definite) -

\ b. V(x) < 0Q for all x (at least negative
[ semidefinite)

" ¢c. V(x) —w=co as “ x“ ——C
then, if V is not identically zero along any

solution of (2) other than the origin, the
system is globally asymptotically stable.

Since V(x) has continuous first partials, the chain rule may be

used to determine V(x)

- gy v 9Xp gy dxy dy %y
Vo= sxl dt + 37: gc * 5_:1‘ dt
v v v
+ ——x_+ « ot X
- Exl 1 axz 2 x n

, V may be written in matrix form as
: an .
v= VvV ox (4)

The basic concept of the Second Method is now evident: by proper
selection or generation of a Liapunov V-function, it is possible to deter-

mine the siability of a nonlinear dynamic system without any knowledge of
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the solution of the system equation. A technique for determining V-functions
is presented later. Before proceding to the applications of the Second
Method, it is perhaps of value to investigate the stability theorem from a
geometric viewpoint.

By requiring V >» ¢ for x # o, V(x) = const becomes a family of
concentric closed surfaces surrounding the origin such that the surface
Vix) = Kl’ lies inside V(x) = K2 whenever K1<1 KZ' Figure 1 shows a graphi-
cal picture for the two dimensional or second order case. Since both V
and Q are implicit functions of time and 6 is required to be non-positive,
the state of the system must be found on sucessively 'smaller" V(x) = const
surfaces or must remain stationary. But Q(x) cannot be zero on any solu-
tion except x = 0, therefore the state of the system cannot remain stationary.
Hence, the system trajectory must move toward the origin. The third condi-
tion, V(x)-—= 00 as ” x ” —e cO ingures that all points in the state space
will be found on some y(x) = const surface.

Three other features of the Second Method should be noted. First,
the method provides only sufficient conditions for stability; hence if a
system does not satisfy the stability theorem, no conclusion may be drawn
relative to system stability. Second, the converse of the stability theorem
has been proven. Therefore if the system is stable, a V-function must exist.
Third, the V-function is not unique, which is one of the most powerful features

of the Second Methcd. No longer is one searching for a single unique solu-

tion to the differential equation but rather for one, out of many, V-functions.

However because the method provides only sufficient conditions, some

V-functions may provide a better answer than others.
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ITI. Linearization

One tool which has been used extensively in analyzing nonlinear
systems is equivalent linearization. To quote LaSalle and Lefschetz:

" in determining practical stability, linear approximations are defin-
itely unsatisfactory."” Since linear stability is always global, it is
impossible to determine from linear approximations the extent of asymptotic
stability -- this must be done by examining the nonlinearities. In fact,
the method of equivalent linearization is only justified on the basis of
Liapunov's stability theorems as indicated below.

The Second Method, however, not oniy justifies linearization but
it makes it possible to determine a finite region of asymptotic stability.
If V(x) is chosen to be a positive definite quadratic form, then V(x)
satisfies conditions (a) and (c) of the stability theorem. 1In addition,
V(x) can be chosen such that for the linearized system Q is negative
definite. If the nonlinear system is used with the same V-function, there
must be a finite region about the origin where & is negative, since for
small || x | the linear terms will predominate. Now by selecting the
largest V(x) = const surface that will fit into this region, a finite
region of stability will be specified. Consider the following method for
obtaining such a V-function.

Let each of the terms in the B(x) matrix be written as a power
series about the origin. This is normally not difficult since many of
the nonlinearities are already in this form and usually only a small num-
ber of the bij's are functions of x. Now write B(x) as the sum of a constant

matrix A and a non-constant matrix C(x)

B(x) = A + C(x) (5)



Then equation (2) becomes:
x = Ax+ C(x) x (6)

This is equivalent to linearization about the origin. Now consider only

the linearized system:
x = AX (7)

A linear transformation of coordinates, x = Pz, may be made such

that in terms of the new coordinates

E=P-1AP2=DZ (8)

where D 1s a diagonal matrix containing the eigenvalues as its elements.
If the linear system is stable, the real part of each eigenvalue must be

negative. Now choose V(z) as:
V(z) =z 2z (9)

where z represents the conjugate of z. Then for the linear system, V(z)
is given by:

. Ay
V(z) =z (D +D) z (10)

which must be negative definite. Therefore, a V-function has been found
for the linearized system. However, since the x state variables are more
related to the physical problem, it is necessary to find V in that coord-
inate system in order to be able to interpret the results. This is a

relatively simple job, accomplished by substituting for z in equation (9),

z=2"x
-

V(x) = x P P x 1)
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Again for the linear system, V(x) and &(x) must be positive and negative
definite respectively. The only remaining steps are to compute &(x) using
the nonlinear system and to find the largest V(x) = const surface which is
contained in the region where Q(x) is negative. A numerical example of

this technique is presented below in example No. 1.

Example 1

The model chosen for discussion is one in which negative reactivity
is introduced into the reactor as a result of an increase in the tempera-
ture of the core. It is assumed that the properties of the reactor and
the conditions within the core may be averaged such that the equations
adequately describe the overall dynamic behaviour of the system independent
of spatial effects.

1f the reactor is unreflected and if one group of delayed neutrons

is considered, the neutron kinetics equations are written

. 1

n(t) = o(t) n(t) - P/ n(e) + xe(r) (12)

c(t) = P/ n(r) - ac(o) (13)
where

n = neutron density (neut/cc)

C = delayed neutron precursor density (nuclei/cc)

= delayed neutron fraction
» = delayed neutron precursor decay constant (sec-l)
¢ = generation time (sec)
p = reactivity

The linearly temperature-dependent reactivity effect is written

p(t) = o~ a’ T(t) (14)




where

/

1
a

o-
temperature coefficient of reactivity (F 7)

T

temperature (OF) at zero power equilibrium
and the relationship between temperature and the neutron density or power

level is arrived at by means of an energy balance on the reactor.
T(t) = Kn(t) - hT(t) (15)

The constants K and h represent a conversion factor and a linear heat re-
moval process, respectively. Equation (4) is written under the assumption
that the coolant flow is constant.

In order that the origin of the state plane or space represents
the equilibrium point of the system, the following transformation of vari-

ables is considered:

n - no

X = —
no

T - To

= (16)

Y To

, = & = Co
- Co

The complete set of equations becomes

Woe
i

= - ay (1 + x) - bx + cz (17)
y = dx - cy (18)
; = fx - gz (19
where
a = a/To/‘
b=c= /s
4 = —no
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f=g=X

m = mass of coolant in core

m = mass fiow of coolant through core
¢p = coolant specific heat

no = operating power level in kilowatts

If the delayed neutrons are not considered, equation (8) is eliminated

and b = ¢ = o. The dynamics are then described by equations (9).

x(t) = - ay(e) |1+ x(0)]
L o (20)
;(t) = dx(t) - ey(t)

Applying the method of obtaining V(x) described in Section (111),

equations (9) are written in the matrix form.

|
= Y= X Ty X1 X9
{X2§ (d  -e ixzj P ol
where
X, = x{t)
x, = y(t)

If R and R are the complex conjugate eigenvalues of the linearized matrix,

'—1

o [

]

TR
[ S |

= |
)

r
1 1 !
—_— |
a(R - ﬁ3 L-R -

[V
| S
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N
e + ad - e2 j

N j—

where R, R =

The operation of equation (11) yields

Voo =2 (x2S s s d 2, (21)
T2t )T TdT1 T2 d T2 )
The linearized V(x) is
. 1 ] 2 2 2
Y = "7~ |- ed + - ae x 22
‘ﬁ(x) 5atd ! ed x; e x1 x2 2 (22)

and the nonlinear temm to be added to the cross product x; x, is:

-~ -

- 1 : H
= 5 - 2d - 23
Vn(X) 2 axlxz( X]. exz) ( )

2a"d ;
where G(x) = %ﬁ(x) + Qn(x).

Two cases are considered for comparison in Figs. 2 and 3.

1. Pressurized water reactor operating at 200 mw. (Fig. 2)

a = 2000 b = 100
d = 10 f =0.1
e = 0.5

2. Nuclear Rocket (Fig. 3)

a = 106 b = 500
d = 2.0 f=0.1
e = 1.5

Tuc largest V(%) which will fit in the region of Q(x) > 0 is
sticwn as a circle in each of the figures. The region is indeed small as
is er. ec i, with the region for the rocket examplc being the smaller. The
lai ter observation is expected physically in light of the fact - -t the
rocket 1is operating i 1000 “imes the power as the PWR and thus a givoi

displacement in power for the two cases is fractionally smaller for the rocket.
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IV. Lurie-Letov Method

The principal contributions to the nuclear engineering literature
in the area of the Second Method have been made by Gyftopoulos, Levin, Nohel,
Smets, and Timlake. Each author makes use of a Liapunov function of the
Lurie type, in which the conditions for stability are based upon the simul-
tageous solution of a set of so-called stability equations. This approach
is the basis for the book by Letov, available in English. Lurie forms re-
quire unconditional stability of the linearized equations.

The meaning of this statement may be clarified by consideration
of an nth order system with one single-valued nonlinearity, f(x). The
linear portion of the system is assumed to have distinct non-zero eigen-
values, The form of the given equations is usually arranged in the so-called

Lurie's cannonic form, in which the ith equation appears as
yi = Moy T (24)

This is equivalent to matrix diagionalization. Lurie's method then seeks
a set of stability equations or conditions which will be valid for every
f(x). Herein lies the power as well as the weakness of the method. The
nonlinearity may not be severly nonlinear at all. In fact, it may be a
simple linear gain, the least severe of all nonlinearities. If this is the
case, the Lurie conditions must be satisfied for all values of this gain,
or for values ranging from zero to infinity. In short, the system must be
uncorditionalily stable,

A third order system with an unbounded gain, as fcr iunstance x3,

is represented in block diagream form in Fig. 4. This system is not



S,
i

14

v b1+

(2+S){1+S)S

_

O=d
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unconditionzlly stable, as the root locus of the system crosses into the
right half plane fcr K greater than 6. Hence, non2 of Lurie's torms could
ever be found to prove giobal asywptotic stability. This is true not just
because the nonlinearity was chosea ag x3, but this wculd be true for any
nonlinearity, as the Lurie method considers all nonlinearities jointly.

Rather than assume a Liapunov V-function and derive stability
conditions valid for any nonlinearity, an alternate approach might be to
attempt to determine one V-function that would fit a particular case. This
is the approach that has been actively pursued by control engineers in this
country. Contributions have been made toward this end by Donaldson, Ingwer-
son, Rekasius, Schultz, and Szego. For example, in the third order system
considered in Fig. 2 above, a V-function suitable for proving asymptotic

3 .

stability for an initial value of x less than or equal to’Jj;—, the value

beyond which Routh Hurwitz says even the linear system is not stable is

3 4 2 11 2 .
V=% o+ 2x1 + 6x1x2 + ) %o + ?.xlx3 + 3x2x3 (25)
+ X 2
3
when
Xp =Y 6 and X, = Xy = 0
3 2/3 (26)
v=3/4 e +26) =V,

The value of V1 represents the largest closed surface within which the sys-
tem may start and be guaranteed to return to the origin. In this case, V
is positive definite in the entire space but Q ceases to be negative semi-
definite at X = 3\f?fw.

It is important to emphasize that the V-function stated above was

determined, or rather generated, to fit this specific problem. No stability
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equations need be satisfied. All that is necessary is that V and 6 meet
the conditions of the Liapunov theorem. The method advocated by the
authors is the Variable Gradient method of generating Liapunov functions.
This method is presented in the following section.

It is further shown that the Lurie-Letov approach, used by
Gyftopoulos, Levin, Nohel, Smets, and Timlake, in nuclear applications ‘=
unnecessarily restrictive and bound to fail to prove stability in a large
number of cases when stability actually does exist. In order to overcome
the obvious short-comings of the Lurie-lLetov technique, a means is pre-
sented of generating a particular V-function to fit the problem at hand.
This approach, called the Variable Gradient Method, overcomes the deficien-
cies of the Lurie-Letov approach and requires no particular state variable
representation, such as the Lurie canonic form. Special emphasis is
placed on the use of the ''matural' state variables, directly related to
the physical system. In this way direct physical interpretation and intui-
tion may be applied to the problem.

Examples are presented to illustrate the mechanics of the method
ev

- i ) - - - P Py
ana tne a tne use o

Cu

vantages o
are applications to reactor dynamics with or without delayed neutron effects
and with temperature dependent reactivity effects which are of practical

importance.

V. Variable Gradient Method

As the name implies, the variable gradient method of generating
V-functions is based on the assumption of a general vector function Vv.
The gradient of V is a particularly interesting function since both V and V

can be determined from this vector.
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The use of VV for determining V was mentioned previously in the

discussion of the Second Method. The result is repeated here for reference.

v=uv x. (27)
V is obtained as a line integral of V/V as
X
[ oy’
v = VVS - dx (28)

>
o]

The upper limit here is not meant to imply that V is a vector,

but rather that the integral is a line integral to an arbitrary point in

the phase space located at (xl, Xy , X ). As shown telow, this inte-

gral can be made independent of the path fof integretion, the simplest of

which is indicated by the expanded form of equation 28.

xl,(x2=x3 = ... =x,=0) xz(xl-xl, Xy=K, = = 0)

\Y =f VJl dx, + J; ‘7v2 dx,,

= ¥ )

xn(x1=x1, s X n-1
+ ... + f Yvn dxn
o
v

where the component of the vector VV in the X4 direction is ‘7Vi =S
i

Standard texts on vector calculus show that, for a scalar function
V to be obtained uniquely from a line integral of a vector function VYV, the

matrix § formed by 57vixb< ; must be symmetrical; that is

? ¢
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n
Xy *1 1
1
A LT : . (29)
; - } XZ .
| ! .
L
L Y ,
3V, 3Vv_

o ]

nust be a symmetrical matrix. Thus, in the third-order case, for example,

the requirement on states that
7 AW '
Vv, _ Wy Vv, ) Ty
*1 %2 *1 X3

and

These are simply the usual curl equations, which specify that

ViUV = 0 for Vv to be uniquely obtained by a l:ue integral of VV. The

O

ondition of the matrix & is thus a generalized curl requirement for the
n-dimensional case.

The problem of determining a V-function which satisfies Liapunov's
theorem is then transformed into the problem of finding aVV such that the
n-dimensional curl of VV =0 . Further, the V and Q determined from VV
must be sufficient to prove stability; that is, they must satisfy Liapunov's
theorem. On the surface, it appears as though the problem is being made
more difficult, as two new functions VV and § have been introduced.
Actually, the opposite is true. The curl equations are the device that

permits a solution of the stability problem starting with Vv.



19

In attempting to generate V-functions for a system with non-
linearities expressed in polynomial form, Szego assumes the coefficients
of the usual quadratic form are not fixed, but are functions of the state
variables. The same assumption is made here concerning VV. As a first
step in the method, VV is set equal to the product of an arbitrary matrix

and the state vector x

Vv =Qx) x (30)
where
(qll(i) qlz()i) ... qln(i)
e = |ay & (1)

i

|

E

k;l (x) q (3(_)}

nl R nn

Substituting into equation 27 we have for V

The ith components of VV is given by

v
Vv, = "_xi = d3 (0% F (0% + L q, (0%,

The qii(i) mist be chosen pocitive to insure that V has at least a chance
of being positive definite. The remaining qij(x) are left as ccmpletely
undetermined quantities. Written in this general form, \YAY appears quite
formidable. However, several of the qij often turn out to be constants,
including zero, or they are obvious from constraints on V imposed by the
investigator, or they are determined from the curl equations. Thus step

1 of the method is accomplished. The complete procedure is outlined herewith,
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1. Assume V'V is of the form shown in equation 30.
2. From ‘7V, determine V,
3. Constrain V to be at least semidefinite.

4. Use the n(n-1)/2 curl equations implied by the
statement that must be syrmetric to determine
the remaining unknown coefficicnts inVv.

5. Recheck V, because the addition of terms required
as a result of step 4 may alter V. ‘

6. Determine V by equation 28, and check for the
region of closedness.

In practice, it is often necessary to complete part of step 4
before it is possible to finish step 3 completely. Two examples will
serve to illustrate the procedure.

The variable gradient method is applied first to equacions 17

and 18, the second order case. V{x) is given by the product

=
-aall(l + Xl)

vy "0y
rday -eqy 1
L2z "2 ]

In order to insure that V(x) is at least negative semi-definite, the fol-

lowing steps are taken:
1. aZl =0

2. Since a21 = a constant, ¢ =0

12 - %1

3. =K >0

a
22
x4/a _ Ky

4, The cross product term must be zero, so q,, = ———
Iy 14y

The corresponding Liapunov functions are

. 1 a 2
kl ([x1 - In (1 + Xl)j + -= )

V(x) 2d X2

Q(X) -Kl % e X22
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Assuming that K, = 1, V(x) = Constant is plotted in Fig. 5, with

1

the x2 axis scaled up by a factor of (a/Zd)%. The dashed curves represent
the V(x) arrived at by assuming the general quadratic form discussed pre-
viously under the linearization method. (It is recalled that the largest
V(x) for the linearized case is 2 x 103(10-6 for the rocket). This repre-
sents an extremely small region in Fig. 5.) It is noted that the V(x)
obtained from the variable gradient always lies within the region Xy > - 1.
These are the only values x; can assume physically, since for any given
operating power, x; = -1 when the power level goes to zero.

The addition of equation 29, and the delayed neutron effects

in equation 27, leads to the third order problem. If z = X3

'ba11+ da21 + fa31 -aau(l + Xl) - ey, coyy - go/.n—
¢ = x! | -bay, + doy,, + fay, ~aq,(1 + x)) - ea,, Cqy, - 804y
é_-baw + day, + fa33 -aal3(1 + xy) - 8, - coyq - ga334
The constraint of V{(x) is accomplished in this case as follows:

1. Leta =0 . =90
13 31

2. Set Xy X, coefficient = 0

3. Set X %, coefficient = 0

4., Set the constant part of Xy Xy coefficient = 0

5. From the experience gained in the second order
!

problem, let Qyq =

1+x 1

The results of steps 2, 3, and 4 are

= (29 o

2. a,, etrf %12



22

v




23
3. a22 =% aK1+of12 (e + b -i—%)
d
b Qg = - f(Z+E7 ap,
It is seen that Qqq must be a positive number, so let a12 = a21 = - K2

The results are:

~ -

4 e+b+f 2

v = bl + K d} 2 {K Ze - K,a(l+x,) + K = (
T 1+x 2 J *1 - i1 a® T Rttty 2d * e+f )
pd 2 Kb
2 erf 3 * 1+ 173
*1
_ r ) 7 a e ,etb+f ] 2
v KlLXl In (1+x1)J + [Kl 2d K2 24 (—ZI;—) Xy
+ K bd 2 K b
— - — %
2 f(e+f) X3 2 e+f X9 ¥3

Inserting typical numbers for a ‘rersurized water reactor, and

again setting K1 =1,

V=1 { 0, 101<’I 2 1100 - 2000k, (14x.) | x.> - 1700 2
= L1+X1 SRS L - 20 2 Xq ! Xy = 7 K2 x3
100
+
14+x 1 173
- r - g
v = Lxl - 1n(1+x1): + LlOO - 5&23 x22 + 1.7 x IO'KZ x32
L 2
- 1.7 x 10 K2 X, x3

For small values of X5 the coefficient of x22 becomes positive 1if K2 < 1/20,

This may be a guide in selecting K although a larger value does not neces-

2’
sarily indicate that V(x) is positive for regions f interest in the state

space. The sign definiteness of the second order terms of V(x) is preserved

if K2 < 20.
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The effect of the addition of delayed neutrons to the system is
seen most clearly in the xlz term of &(x), where the delayed neutron frac-
tion appears as a relatively large negative coefficient.

Although the visualization of the effect of varying KZ is hindered
by the presence of three dimensions, it is helpful to examine the regions in
each of the three planzs separately. Graphical illustrations of this pro-
cadure are shown in Figs. 6a, b. It is seen that the size of the region
in which G is negative semi-definite may be increased in one place while it
decreases in another.

As an example of choos'ng a V(x), consider the case where K2 = — .

The largest V(x) which wiil fit in the region V < 0 is Vix), = 17.

Vi. Summary

The advantagas of the Variable Gradient method are evident from
the examples. In the second order case, the linearization technique leads
to a region of stability which is extremely small whereas the variable
gradient leads to a conclusion of stability for all physically real values
of the variables. It is possible that the smaller region may be adequate
for cases in which the system conditions would never be expected to change.
However, for a system which would encounter & wide range of corditions and
large incremental power derands, such as a nuclear rocket, it is necessary
to be able to conclude stability for as large a region as possible.

The desirability of employing the natural system variables 1is
secn in the ease with which the Variable Gradient method is applied with
the equations in their original form. It is possible to combine the equa-
tions in phase variable representation. This requires unnecessary manipulation

arnd leads to combersome nonlinear terms. Also, some physical intuition may
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be used in thc analysis because permissable limits or the temperature and
power level are known.

Regardless of the technique used in applying the Second Method,
higher order problems become somewhat difficult to approach. The Variable
Gradient method reduces the labor somewhat by eliminating preliminary manip-
ulations. For lower order problems it is noted that nonlinearities more
complicated than the one considered in this report may be hancled by the
Variable Gradient method without appreciably increasing the difficulty of
the problem. A general problem in which the reactivity is a nonlinear
function of temperature or a function of more than one variable such as in
a nuclear rocket, may be worked to include an extremely wide range of

operating conditions.

VII. Research to be Conducted Puring the Next Report Period

Expericence gained in the epplication of the Second Method of
Liapuriov to basic examples leads to a consideratior of more difficult practi-
cal problems. 1In particular, for the analysis of nuclear rocket symptoms,
the following three areas merit investigation.

A, Time Varying Parameter Problems

In addition tc reactivity effects inherent in a reactor system,
it is important that the extermally-regulated reactivity inputs be consider-
ed. This is particularly true in the stability analysis of a nuclear rocket
system in which the power level would be adjusted over a wide range by use
of a programmed reactivity insertion.

Physically, reactivity inputs are looled upon as system driving
functions; for purposes of analysis, however, this input appears as a time-

varying parameter in the nonlinear xinetics equation.
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“he most promising approach in applying liapunov's Second Methad
to this class of problems is to introduce cither time or & function of time
as ancther state variable. This necessarily ircreases the order of the
problem by one, but other methods rely on the supposition that the para-
meters change very slowly with time. This is not valid for the casc of

rapidly varying reactivity inputs.

The use of bounded inputs leads to a discussion of system bound-
cdness rather than asymptotic stability. The solution is bounded if there
exists a closed recgion about the cquilibrium point outside of which dv/dt
is negative definite. In a reactor this corresponds to a bounded increase
in the power level in response to a bounded reactivity input such as a
step function.

B. Coupled Ccre Reactors
This study of arrays of independently subcritical cores, the net

result of which is a critical configuration, is complicated by the existence

cf time delay terms in the neutron kinetics cquations. This delayed source
term arises from the interactions between the individual cores. The stab-
ility problem for systems with delay shculd be treated most generally by
the application of Liapunov's Direct Method.

In addition to an investigation of asymptotic stability, the effect
on each core of a reaccivity irput to one or several cores is important. \
The methods found to be useful in the analysis of time varying paramcter
problems shculd be directly applicable in this case.

Althcugh the coupled core stability analysis would deal with a
high order system, there is considerable similarity and symmetry among the

equations, thus the solutions should not be as formidable as for other other
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high order problems. This problem hcs additional fundamental importance
since a further study could lead to on understanding cf the spatially de-
pendent dynamics of reactor cores.

C. Suboptimal Control of Nonlinear Systems

In recen: years there has been an ever increasing gap between
practice and theory in the area of optimal control. All of the techniques
presently employed for designing optimal systems involve excessive amounts
of computational labor particularly in the nonlinear case. The resulting
systems are generally open loop in nature and hence very sensitive to
parameter variations and external disturbance. Also, in general, little
or no physical intuition is gained from these solutiomns.

One approach which has been suggested for alleviating these prob-
lems is suboptimal systems, systems which do not preovide the optimum in
performance but which are mcre easily realized ir a practical closed loop
form. Since the performance index used is arbitrary in many cases, the
need for complicated systems which minimize the performance index may be
highly questionable. It is proposed that an investigation of suboptimal
control be undertaken using as a basic tool the Liapunov function. With
this approach it is necessary that the autonomous system be (asymptotically)
stable -- this would not appear to be overly restrictive. In the course of
the study, it will undoubtedly become necessary to make several other re-
strictions of the class of system to be investigated or the performance
indices emplcyed.

A suboptimal design technique is ideally suited to problems, such
as the nuclear rocket control system, in which the describing equations

are highly approximate. The use of a complicated design procedure to find
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an optimum control in this case is questionable particularly since the
answer will generally be in the form of open locp control. If it were
possible to design a practical closed loop system which performs in an ap-

proximately optimum fashion this would certainly be the more desirable

engineering solution.



PART 1I

Optimization Studies in Nuclear Reactor Dynamics




Optimum Reactor Shutdown Program for Minimum Xenon Buildup

I. Introduction

After shutdown of a high-flux thermal reactor, the xenon concen-
tration will increase for many liours. Since xenon formation is the result
of the radioactive decay of 1odine, the maximum xenon concentration depends
also on the iodine concentration at the time of shutdcwn. The maximum
xenon concentration increases rapidly with flux level. For a flux level
of lUI4 neutrons per square centimeter per secend the maximum Xenon con-
centration after shutdown is 4 times the equililtrium xenon concentration
at time of shutdown. The maximum xenen concentration corresponding to a
flux level of 1012 neutrons per square centimeter per second is 50 times
greater than the equilibrium value. 1In order to start the reactor any
time after shutdown, sufficient excess reactivity must be present to over-
ride the xenon poisoning. The amcunt of excess reactivity required to
override the xeunon poisoning can be wminimized ly determining an optimum
reactor shutdown program. The development of optimun reactor shutdown
programs have been investigated by Ash, Bellman and Kalaba using dynamic
programming.1 Due to the size of computer necessary to sclve this protlem
no solution was given. Fresdall and Babb2 investigated the effect of a
simple-pre-selected shutdown program, such as exponential or linear func-
tions, in the reduction of the maximum xXenon concentration. These programs
are in no sense optimal. The approach to the solution of the problem pre-
sented here is htased on Pontryagins Maximum Principle.3

Pontryagins Maximum Principle is used to determine an optimum

reactor shutdown program that will minimize the minimum value of xenon

30
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concentration. Optimum shutdown programs have been determined for flux

. 14 2 16 2
levels ranging between 107 n/cm”-sec to 107 n/cm“-sec and for control
times up to 7 hours. Results show that considerable reduction in the peak

»enon concentration can be accomplished by relatively simple shutdown programs.

IT1. Formulation of the Problem

In the model used here, it is assumed that the state of the
reactor can be described by the neutron flux ¢, the iodine concentration
1

, and the xenon concentration X. The equations describing the xenon con-

centration as a function of time are:

(¢}
I =vy; 70 -MI-0)0I (1)
o
K=y, g ¢+ 0T - X, X -0, 0X (2)

with the initial condition
¢(o) = ¢O X(o) = Xy I(o) = 1 (3)

The symbols used in the above equations are defined below:
Y, = fission yield of iodine
Yy < fission yield of xenon
N = decay constant
?f = macroscopic fission cross section
¢ = microsccpic absorption cross section
The last term in equation (1) is neglected since its contribution is negligible
for flux levels less than 1016 n/cmz-sec. Solving equations (1) and (2) for
¢ = 0, the iodine and xenon concentration as a function of time after shut-

down is given by equations (4) and (5) respectively,
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At

I = Ib e )
13! S Aot
- I, (e ! -e 2y 4 X e 2 (5)
Ao N b
2 1

with the initial conditions

1(b) = I, X(b) = Xy (6)

In equations (4) and (5) the subscript b denotes the iodine and xenon con-
centration at the time of shutdown. Taking the derivative of equation (5)
and equating to zero the time corresponding to the occurrence of maximum

xenon concentration can be obtained

dX Mlp “Apt -Aqt Aot
ea_iB - 1 - 2" =
2
t = %'1-%-2 ln xl I v (6)

17°b

Substituting equation (8) into equation (5), the maximum value of the xenon
concentration after shutdown,in terms of the iodine and xenon concentration

at the time of shutdown, is given by

Xb C
X pax = (I + AX,) (B + AB—=) (9)
b
X2 ) )
A=1- =T C = 10
N B =% *1N2 (10)

The problem is to determine a flux program for the control time
interval 0 <€ t < b such that the maximum value of xenon concentration given
by equation (9) will be a minimum. From physical considerations the follow-

ing constraints are placed on the system.

& x2¢(t)20 I(t) >0 X(t) >0 (11)

ma
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IIT. Application c¢f the Maximum Principle

In applying the maximum principle, the following state variables

are defined,

Xy = 1 Xy = X (12)

and the standard notation p = ¢ for the control variable is used. To mini-

mize xmax the performance index S is

2 C
S =X ax = (xlb + Axgy) (B + AB = ) (13)
1b
The new state variable X, is introduced.
T2 \C 14
X, = (x1 + sz) (B + AB X ) (14)

The problem reduces to one wherc the final value of the state variable X,

has to be minimized. The time derivitive of x0 is

o - - X, C
xo =1 [(¥17; + AY,%; - Ao.x,) (B + AB 2+ T -
1
X X. X Z "{\2

&
-

- op%p-Yy I 7t Ay, Z¢ §I - Aoy 1 Avy1Zs ;If ) x

X2 C=-1 -
+ %1 + - - A ) (B +
x (B + AB X1 ) ABCJ (XI(A 1)x1 hzxz) (B
X9 C x9 C-1 [
+ AB . ) + ABC (B + AB ;I ) NXpm MgXp = Mxg F
xn2 b
2 2
+ A(lez SN, Tt AN T )]
" *1 (15)

The Hamiltonian of the system is defined by

)
H = }: Vg Xg (16)
o
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which becomes

[e]
H = \yo X + \Ul(ylzfp - xlxl) + (17)

Wz(yzﬁfp +NX] - NXy - czxzp)
where X is given by equation (14). The maximum principle states that for
a control, 1., to be optimal, Xmax equal to a minimum, the Hamiltonian of the
system must be a maximum with respect to p for all values of t in the control
time interval. For the case in point, the Hamiltonian is a linear function
of p, therefore the optimal control will be an on-off type control operat-

ing on the boundaries of the control region. That is

OH
forb—p->0 p=¢=¢max
(18)
forgﬂ<0 p=d=0
b

and at every time where

- — x, C
& - ‘yo [(Y]_Xf - o1xy + AYZZf - AO’ZX?)(B + AB -)-{-%) +

R X) —~ X X
__“._i —_— 2 2
+ ABC ( X7 o . - Y1 %f -4 + oy ;T)(Xl + sz)(B +

+ aB =51 T T

the flux will switch from ¢ to 0 or vice-versa. The next logical step is
max
to determine the optimal number of switchings. This is normally done by
H
calculating the number of times 3 changes sign in the control interval.

For the case here, the limitations on the state functions are given by

equation (11). The auxiliary functions are defined as

© - - ok 20
Wi ws 5;? (20)
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with the houndary conditions
G(b) = -1 () =0 ¥,(t) = 0 (21)

These functions are not limited in any other sense. It is not possible from
this information to determine the optimum number of switchings. However, an
alternate approach can be used. By assuming a given number of switchings

it is possible to calculate I and X from equations (1) and (2) for the time
interval O < t < b. Solutions to these equations will have the switching

t

times tg1r ¢ as parameters. Knoewing I and X or X and X, and

s2’ sn’

the boundary conditions at ¢t = b, the auxiliary functions wl and Wz can te
determined for the control interval 0 < t < b from equations (20) and (21)
ctarting with the last sub-interval tg, < t < b. These equations will have
the same parameters tgi- It is now possible to write oune cguation in the
form of equation (19) for every switching point. There will therefore te
n algebraic equaticns with n unknowns corresponding to the switching times.
Another method to solve this problem is to calculate X, from
equation (1) for a control function with an assumed number of switchings.
By trial and error a combination of switching times can be determined that
will yield the smallest xenon peak. Using this technique the optimum num-
ber of switchings is also determined. Since this technique is amenable to

digital computer calculations it is the approach that was used.

IV. Results
Using the procedure outlined in the previous section, optimum
shutdown programs were determined for a reactor having the following values

tor the constants:
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y, = 0.056 A = 2.97107 sec”t Ze = 107 %cm !

-1 18

Y, = 0.003 N, = 2.1°107° sec oy = 3.5-10" Bcm?

Figure 1 shows the reduction in the xenon peak as a functicn of
the control time parameter b. The maximum xenon concentration is normalized
to the maximum xenon concentration occurring after instantaneous shutdown.
Values of the maximum xenon concentration occurring after instantaneous
shutdown are shewn in Fig. 2 as a function of the flux level. 1In Fig. 1
there are two distinct regions corresponding to one-pulse and two-pulse
control,

One-pulse control is optimal for control times less than four or
five hours, depending upon flux level. An example of this type of control
is given in Fig. 3. 1In this figure, the xenon concentration, as a function
of time, for instantaneous shutdown is compared with a one-pulse optimum
ccntrol shutdown program. The pulse width and termination time, for the
flux level indicated, are shown in the upper part of the figure. A program
of this type can be characterized by one variable, such as the pulse width.
Figure 4 gives the optimal pulse width corresponding to given control times
and flux levels.

With an increasing control interval the value of Lhe xenon concen-
tration occurring just prior to the control pulse increases rapidly and for
b = 4.5 hours it reaches the value of the xenon peak after shutdown. Beyond
this point the maximum xenon concentration occurs before, rather than after
b = 5, The problem statement given above must therefore be modified. It is
necessary to require the maximum value of the xenon concentration to be a

minimum after t = 0 rather than after t = b. To meet this requirement a
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Reduction in Xenon Buildup

Fig. 1.
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second pulse must appear before the terminal pulse in crder to reduce the
first peak.

When the control time extends into the two-pulse region, the pulse
width for the pulse terminating at t = b remains constant and a second pulse
appears at t = t, as indicated in Fig. 5. As the control time interval b
increases, the width of the pulse beginning at ty, increases, ts remaining
constant independent of the control time. It is noted that while the width
of the pulse is well definec, the maximum value of the xenon concentration
is relatively insensitive to the location of the first pulse. Variations in
ty, as large as %5 produces very little change in the maximum xenon concentra-
tion. The optimal program in the two-pulse control region is described by
three characteristic numbers: tj, the time of occurrence of the first pulse;
A6t), the width of the first pulse; and Atj, the width of the terminating
pulse. A plot of these characteristic numbers are shown in Fig. 6. Knowing
the value cof the steady state flux at the time of shutdown and given a con-
trol time b, which falls into the two-pulse contrcl regicn, the optimil shut-
down program can be determined from Fig. 6.

Calculations based on the original problem state, even though they
lose their physical meaning in this region can be carried out and serve as
guidelines as to the hest that may be accomplished in the region. It is
clear from Fig. 1 that this is the case for the two-pulse control region.
These guidelines are shown as dashed lines on Fig. 1. If the two-pulse con-
trol is extended beyond the two-pulse control region, the lines as shown
in Fig. 1 curve away from those calculated on the premise of the original
problem statement. It is reasonable to assume that beyond this peoint three-

pulse control is needed. There is no proof as to how close it is possible
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to come to these optimum guidelines. It is conjectured that three, four
and larger number of control pulses will result in further reduction in
the maximum value of the xenon concentration for large values of control

time.

V. Discussion

For the reactor model assumed it is clear that considerable re-
duction can be realized in the after shutdown buildup of xenon poisoning.
The amount of reduction in xenon concentration depends on two parameters,
the maximum flux level at the time of shutdown and the available control
time. For high flux levels the fractional reduction in the xenon poison-
ing is greater for a given control time than that obtained at lower flux
levels. Since the maximum value of the xenon concentration increases al-
most linearally with the flux level the reduction in xenon concentration
is more dramatic for the high flux levels. For example, a control time
of b = 6 hours, the fractional reduction is 27.7%, 36.6% and 44.59 corres-

4

ponding to flux levels of 101 , 3 x 104

and 1016, respectively. The

values of the maximum xenon concentraticns for these flux levels are 9.1

13

x 10 2.6 x 104 and 8.4 x 101° respectively. For U,35 fuel, the re-
’ 235

)

lationship between poisoning and xenon concentration is given by

15

Po—w=— X=2.49 x 10777 X (22)
; t “f
The equivalent reactivity is
p = fP (23)

where f is the thermal utilizacion factor for the reactor without poisoning.

Using a value of £ = 0.8, the reduction in terms of reactivity is
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15 Xm

Ao =2 X 10 77 X, (1 - o (24)
Xmo

For flux levels of 1014

, 3% 1014, and 1016 the percent reduction in re-
activity that can be accomplished with optimal two-pulse control is 18,
52 and 1,680,

In all the cases presented above, it was assumed that the maxi-
mum control pulse level is equal to the equilibrium flux level at the time
of shutdown. Since the pulse width is fairly small in many cases, it would
seem reasonable to permit overloads for these short periods of time. This
was done at the steady state flux level of 3 x 1014 by permitting the maxi-
mum value of the flux to be 4, 5, and 6 x 101%. while the pulse width de-

creased appreciably, to about one-half at o .. = 2¢ the reduction in xe-

fo X4
non poisoning improved only slightly, changing from 25.5% to 26.1% for
nax = 2®O at b = 4 hours.

In deriving optimum shutdown programs, it was assumed that the
flux could undergo step changes. In reality, reactors have period limita-
tions and fast startups and shutdowns have to be avoided. To estimate the
effect of period limitations, the example presented in Fig. 5 was worked out
with a constraint on the maximum rate of change of flux, requiring 10 minutes
to reach its peak value from startup and 10 minutes to return to zero. During
this time the flux was assumed to change linearally for simplicity. This
last assumption is more restrictive than the real case where the flux rises
in an almost exponential manner. The effect of this distorted control pulse

was essentially negligible and was less than one percent of that obtained

using rectangular pulses.



Optimal After-Heat Removal

I. Introduction

When a nuclear reactor is shutdown, appreciable energy continues
to be released due to the emission of beta and gamma rays from radioactive
fission products. The rate at which energy or heat is released depends
upon the reactor power level and period of operation prior to shutdown.

For reactors operating at high-power levels, the after-shutdown heat genera-
tion can reach a level such that if not removed, will cause damage to the
reactor. The after-shutdown heat removal is a problem in the operation of
nuclear rocket engines. In the nuclear rocket engine the propellant serves
as the coolant, and therefore, a certain amount of propellant must be reserv-
ed for the removal of heat generated after shutdown. The purpose of the in-
vestigation currently in progress is to determine optimum after-heat removal
programs which will prevent overheating of the nuclear rocket engine, while

using the smallest quantity of propellant.

I1. Heat Transfer Model

An exact description of the temperature distribution and heat trans-
fer within a nuclear rocket engine is quite involved. In the initial phase
of this investigaticn a simplified heat transfer model which is telieved
to give a fairly satisfactory description of the system, is teing used.
More realistic models will be used after a greater insight into the problem
has been obtained from the simplified model.

It is assumed that the heat transfer characteristics of the system
can be described bty a simple heat exchanger, based on the following assump-

tions:

45
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Under these

reactor is:

where:

If

46
There is no axial heat conduction.
The temperature of the fuel is uniform in the radial
direction.
Heat is generated uniformly in a fuel element independent
of position.
The temperature difference between the fuel and coolant
(T - T.) is space independent and a function of time only.

assumptions, the heat balance equation for a section dx of the

dT
QAdx = Mcp ac Adx + hpdx (T - T.) 1)

= heat generation per unit volume per second

= cross sectional area of the fuel

= mass of fuel per unit volume

= heat capacity of fuel material

= temperature of fuel, a function of x only

= heat transfer coefficient from fuel to coolant
= yetted perimeter of coolant channel

= coolant temperature, function of x only

it is assumed that the coolant does not change phase in the

reactor core, then all the heat transferred to the .coolant goes in to in-

creasing its entalpy

where:

wcC

w

Cp

T;

X
T =T = [y (r - To) ax )

(o]

= mass flow rate of coolant
= heat capacity of coolant

= coolant inlet temperature
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Since (T - T.) was assumed incepencent of x it follows that

wcp(TC - Ty) = hp(T - TJx (3)
or
we T, hpxT
T. = Ly (4)

wep + hpx wep + hpx

Substituting equation (%) into equation (1), and rearranging terms,

results in:

ar _ Q9 1 T -Tj (5)
dt Meg  AMep 1 4 x
ph wep

For the mcdel given, the temperature is always the highest at
X = g, the reactor cutlet. Therefore, T(x,t) can be replaced ty T(/,t) =
T(t). If the coolant is a gas, the heat transfer coefficient is given by

the familiar relationship:

\ /
hD _ 057 Re+8 p0- 33 (u_ 0.14 6)
k Mw
where: D = hydraulic diameter of cooclant channel

K = thermal conductivity of fuel

Re = Dw_ Reynolds number
pAL

A, = Cross-section of coolant channel

c
Pr = Prandtl number --Jﬁfi
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b = viscosity at bulk fluid temperature

by = Viscosity at wall temperature

Therefore:
; 0.8 0.14
f 1 1 .
hp = 0.027 kn 1—2—! wo'8 Pro"3 {E—l (7N
Yy | Huw |
“p 19% 0.3 (0-14
letting k, = (.027 ka!l— Pr [ S
1 ‘le i !
\L (] “W:’
Equation (7) becomes:
0.8
hp = S\ (8)

If the reactor had been operating at a constant power PQ for a

pericd of to hours, then the decay heat power t hours after shutdown is

given by
-3 -0.2 -0.2
P=3.23 10 p, [t - (t + 1) ] (9)
The after-heat generation per unit volume per second is given by equation
(10)

-3 Po

-0. -0.:.
Q= 3.23 - 10 Al [ t Z . (t + to) O'Z] (10)

where AgQ and P, have the same dimensions.

Substituting equation (8) and (10) into equation (5) gives:
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letting

3.23 - 10°°P

c
B = ° C = i and D= B
AfMcR , AMcyp tky
then equation (11) becomes
d -0. - cw(T - Tj)
a%-B [t 2. (t +t,) 0‘2] - 5 (12)
1 +Dw' "~

Equation (12) describes the system under consideration.

I1II. Solution of the Protlem

The problem is to determine a program for the coolant flow rate,

in the time interval 0 < t < t) , such that:

a. TST for all 0 <t <ty
max

t
b. The integral /A 1 wdt be as small as possible.
o

The problem can be divided into two separtate regions. When the
system operates in the region T < Tp,x the performance index is given by

t
S = Ljp 1 wdt (13)

0
With no additional restrictions the obvious result is w = O throughout the

region. The temperature change in 'his region is given by:

3—1;-3 [t—O.Z -(t+t0)'0'2] (14)

or

/t -O 2
T=38 [t'o'z S (t +ty) 7] de + T, (15)
o’
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where T, = T(o) in the given initial condition. The other possibility is
fer the system to operate on its boundary T = Tpzx. To apply the Maximum
Principle to this region of operation, it must be stated in its modified
form as given by Theorem 22 of Reference }. For the simplified model given

by equation (12), and with the restriction T = T the problem can te sol-

max’

ved without the use of the Maximum Principle. The solution is:

max Ti)

aT
< - (1r)
1 + Dwo'Z

dt

Cw(T

-0 =B [t—O.Z S (r 4+ to)-O.ZJ

The optimal solution for the time interval 0 < t < tj can be any
combination of the above solutions. From physical considerations it is
obvious that the most efficient heat removal is obtained when the ocutlet
temperature of the coolant is at its maximum. For the model given by equa-
tion (12), it is equivalent to T = T ... Therefore, the optimal coolant
flow rate in the sub-interval 0 < t < t' is zero. The coolant flow rate in
the sub-interval t? < t < tj is given by equation (16). The value of t'

can be calculated from equation (15) by letting T = T, The corresponding

ax’

history of the temperature is given by equation (15) for the interval 0 <

t <t' and is equal to T = T .x for the interval t' <t < ty

X
For the simplified model assumed here, the solution is fairly
obvious and the Maximum Principle is not needed. During the next report

period more realistic models for the system will be used. It is douttful

that the solutions using more complex models will te quite as obvious.
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